博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDU 1890 Robotic Sort (splay tree)
阅读量:6527 次
发布时间:2019-06-24

本文共 7200 字,大约阅读时间需要 24 分钟。

Robotic Sort

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1640    Accepted Submission(s): 711

Problem Description
Somewhere deep in the Czech Technical University buildings, there are laboratories for examining mechanical and electrical properties of various materials. In one of yesterday’s presentations, you have seen how was one of the laboratories changed into a new multimedia lab. But there are still others, serving to their original purposes. 
In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order. 
Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B. 
A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc. 
The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc. 
Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.
 

 

Input
The input consists of several scenarios. Each scenario is described by two lines. The first line contains one integer number N , the number of samples, 1 ≤ N ≤ 100 000. The second line lists exactly N space-separated positive integers, they specify the heights of individual samples and their initial order. 
The last scenario is followed by a line containing zero.
 

 

Output
For each scenario, output one line with exactly N integers P1 , P1 , . . . PN ,separated by a space.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation. 
Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed. 
 

 

Sample Input
6 3 4 5 1 6 2 4 3 3 2 1 0
 

 

Sample Output
4 6 4 5 6 6 4 2 4 4
 

 

Source
 

 

Recommend
linle
 

 

 

 

 

splay tree

旋转操作

1 /* ***********************************************  2 Author        :kuangbin  3 Created Time  :2013/8/24 23:28:43  4 File Name     :F:\2013ACM练习\专题学习\splay_tree_2\HDU1890.cpp  5 ************************************************ */  6   7 #include 
8 #include
9 #include
10 #include
11 #include
12 #include
13 #include
14 #include
15 #include
16 #include
17 #include
18 #include
19 using namespace std; 20 21 #define Key_value ch[ch[root][1]][0] 22 const int MAXN = 100010; 23 int pre[MAXN],ch[MAXN][2],root,tot1; 24 int size[MAXN];//子树规模 25 int rev[MAXN];//反转标记 26 int s[MAXN],tot2;//内存池和容量 27 28 //debug部分********************************** 29 void Treavel(int x) 30 { 31 if(x) 32 { 33 Treavel(ch[x][0]); 34 printf("结点:%2d: 左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d rev = %2d\n",x,ch[x][0],ch[x][1],pre[x],size[x],rev[x]); 35 Treavel(ch[x][1]); 36 } 37 } 38 void debug() 39 { 40 printf("root:%d\n",root); 41 Treavel(root); 42 } 43 //以上是debug部分************************************** 44 45 46 void NewNode(int &r,int father,int k) 47 { 48 r = k; 49 pre[r] = father; 50 ch[r][0] = ch[r][1] = 0; 51 size[r] = 1; 52 rev[r] = 0; 53 } 54 //反转的更新 55 void Update_Rev(int r) 56 { 57 if(!r)return; 58 swap(ch[r][0],ch[r][1]); 59 rev[r] ^= 1; 60 } 61 inline void push_up(int r) 62 { 63 size[r] = size[ch[r][0]] + size[ch[r][1]] + 1; 64 } 65 inline void push_down(int r) 66 { 67 if(rev[r]) 68 { 69 Update_Rev(ch[r][0]); 70 Update_Rev(ch[r][1]); 71 rev[r] = 0; 72 } 73 } 74 void Build(int &x,int l,int r,int father) 75 { 76 if(l > r)return; 77 int mid = (l+r)/2; 78 NewNode(x,father,mid); 79 Build(ch[x][0],l,mid-1,x); 80 Build(ch[x][1],mid+1,r,x); 81 push_up(x); 82 } 83 int n; 84 void Init() 85 { 86 root = tot1 = tot2 = 0; 87 ch[root][0] = ch[root][1] = pre[root] = size[root] = rev[root] = 0; 88 NewNode(root,0,n+1); 89 NewNode(ch[root][1],root,n+2); 90 Build(Key_value,1,n,ch[root][1]); 91 push_up(ch[root][1]); 92 push_up(root); 93 } 94 //旋转,0为左旋,1为右旋 95 inline void Rotate(int x,int kind) 96 { 97 int y = pre[x]; 98 push_down(y); 99 push_down(x);//先把y的标记下传,在把x的标记下传100 ch[y][!kind] = ch[x][kind];101 pre[ch[x][kind]] = y;102 if(pre[y])103 ch[pre[y]][ch[pre[y]][1]==y] = x;104 pre[x] = pre[y];105 ch[x][kind] = y;106 pre[y] = x;107 push_up(y);108 }109 //Splay调整,将r结点调整到goal下面110 inline void Splay(int r,int goal)111 {112 push_down(r);113 while(pre[r] != goal)114 {115 if(pre[pre[r]] == goal)116 {117 //有反转操作,需要先push_down,再判断左右孩子118 push_down(pre[r]);119 push_down(r);120 Rotate(r,ch[pre[r]][0]==r);121 }122 else123 {124 //有反转操作,需要先push_down125 push_down(pre[pre[r]]);126 push_down(pre[r]);127 push_down(r);128 int y = pre[r];129 int kind = ch[pre[y]][0]==y;130 if(ch[y][kind] == r)131 {132 Rotate(r,!kind);133 Rotate(r,kind);134 }135 else136 {137 Rotate(y,kind);138 Rotate(r,kind);139 }140 }141 }142 push_up(r);143 if(goal == 0) root = r;144 }145 //得到第k个结点(需要push_down)146 inline int Get_kth(int r,int k)147 {148 push_down(r);149 int t = size[ch[r][0]] + 1;150 if(t == k)return r;151 if(t > k)return Get_kth(ch[r][0],k);152 else return Get_kth(ch[r][1],k-t);153 }154 //找前驱(需要push_down)155 inline int Get_pre(int r)156 {157 push_down(r);158 if(ch[r][0] == 0)return -1;//不存在159 r = ch[r][0];160 while(ch[r][1])161 {162 r = ch[r][1];163 push_down(r);164 }165 return r;166 }167 //找后继(需要push_down)168 inline int Get_next(int r)169 {170 push_down(r);171 if(ch[r][1] == 0)return -1;172 r = ch[r][1];173 while(ch[r][0])174 {175 r = ch[r][0];176 push_down(r);177 }178 return r;179 }180 181 struct Node182 {183 int id,val;184 }node[MAXN];185 bool cmp(Node a,Node b)186 {187 if(a.val != b.val)return a.val < b.val;188 else return a.id < b.id;189 }190 int main()191 {192 //freopen("in.txt","r",stdin);193 //freopen("out.txt","w",stdout);194 while(scanf("%d",&n) == 1 && n) 195 {196 for(int i = 1;i <= n;i++)197 {198 scanf("%d",&node[i].val);199 node[i].id = i;200 }201 sort(node+1,node+n+1,cmp);202 Init();203 for(int i = 1; i <= n;i++)204 {205 Splay(node[i].id,0);206 printf("%d",size[ch[root][0]]);207 if(i < n)printf(" ");208 else printf("\n");209 Splay(Get_kth(root,i),0);210 Splay(Get_next(node[i].id),root);211 Update_Rev(Key_value);212 }213 }214 return 0;215 }

 

 

 

 

 

 

 

 

转载地址:http://igvbo.baihongyu.com/

你可能感兴趣的文章
【转载】WinCE6.0 Camera驱动源码分析(二)
查看>>
Cobertura代码覆盖率测试
查看>>
【selenium学习笔记一】python + selenium定位页面元素的办法。
查看>>
Linux禁止ping
查看>>
【Matplotlib】 标注一些点
查看>>
[AX]乐观并发控制Optimistic Concurrency Control
查看>>
自定义类加载器
查看>>
MySQL数据库事务各隔离级别加锁情况--Repeatable Read && MVCC(转)
查看>>
C++构造函数例程
查看>>
把某一列值转换为逗号分隔字符串
查看>>
DLL,DML,DCL,TCL in Oracle
查看>>
android之存储篇_存储方式总览
查看>>
SSE指令集学习:Compiler Intrinsic
查看>>
两种attach to process的方法
查看>>
WCF如何使用X509证书(安装和错误)(二)
查看>>
Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)
查看>>
iOS中--NSArray调用方法详解 (李洪强)
查看>>
java异步操作实例
查看>>
Centos6.8防火墙配置
查看>>
php and web service with wsdl
查看>>